Inferring the Perturbed microRNA Regulatory Networks in Cancer Using Hierarchical Gene Co-Expression Signatures

نویسندگان

  • Jin Gu
  • Zhenyu Xuan
چکیده

MicroRNAs (miRNAs), a class of endogenous small regulatory RNAs, play important roles in many biological and physiological processes. The perturbations of some miRNAs, which are usually called as onco-microRNAs (onco-miRs), are significantly associated with multiple stages of cancer. Although hundreds of miRNAs have been discovered, the perturbed miRNA regulatory networks and their functions are still poorly understood in cancer. Analyzing the expression patterns of miRNA target genes is a very useful strategy to infer the perturbed miRNA networks. However, due to the complexity of cancer transcriptome, current methods often encounter low sensitivity and report few onco-miR candidates. Here, we developed a new method, named miRHiC (enrichment analysis of miRNA targets in Hierarchical gene Co-expression signatures), to infer the perturbed miRNA regulatory networks by using the hierarchical co-expression signatures in large-scale cancer gene expression datasets. The method can infer onco-miR candidates and their target networks which are only linked to sub-clusters of the differentially expressed genes at fine scales of the co-expression hierarchy. On two real datasets of lung cancer and hepatocellular cancer, miRHiC uncovered several known onco-miRs and their target genes (such as miR-26, miR-29, miR-124, miR-125 and miR-200) and also identified many new candidates (such as miR-149, which is inferred in both types of cancers). Using hierarchical gene co-expression signatures, miRHiC can greatly increase the sensitivity for inferring the perturbed miRNA regulatory networks in cancer. All Perl scripts of miRHiC and the detailed documents are freely available on the web at http://bioinfo.au.tsinghua.edu.cn/member/jgu/miRHiC/.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Gene Signatures in Different Molecular Subtypes of Gastric Cancer (MSS/ TP53+, MSS/TP53-): A Network-based and Machine Learning Approach

Gastric cancer (GC) is one of the leading causes of cancer mortality, worldwide. Molecular understanding of GC’s different subtypes is still dismal and it is necessary to develop new subtype-specific diagnostic and therapeutic approaches. Therefore developing comprehensive research in this area is demanding to have a deeper insight into molecular processes, underlying these subtypes. In this st...

متن کامل

In silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma

As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...

متن کامل

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

Topological Properties of Co-Occurrence Networks in Published Gene Expression Signatures

Meta-analysis of high-throughput gene expression data is often used for the interpretation of proprietary gene expression data sets. We have recently shown that co-occurrence patterns of gene expression in published cancer-related gene expression signatures are reminiscent of several cancer signaling pathways. Indeed, significant co-occurrence of up to ten genes in published gene expression sig...

متن کامل

Clustering Genes and Inferring Gene Regulatory Networks using Multiple Information Sources

Gene clustering is grouping genes together in clusters on the basis of some similarity measure. This problem has been extensively studied by the bioinformatics community. Most of the techniques employed for clustering genes use gene expression data as the only source of information. We propose a novel hybrid approach towards gene clustering which utilizes useful biological information available...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013